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Abstract: 

In this paper we have proved a fixed point theorem in a complete metric space with the help of 

an altering distance function. The main feature of our theorem is that, it contains square root in 

the inequality. We have also deduced some consequences of our theorem and supported our 

result with examples. 

Keywords: Contraction, Cauchy sequence, Fixed point, Altering distance function, Kannan type 

mapping. 

AMS Subject Classification 2010: 47H10, 54H25. 

 

Introduction and Mathematical Preliminaries: 

In this section we have given some existing definitions, results and notations which are essential 

for our discussion in the next sections. 

        Throughout this paper we have used the following notations. 

        We denote the set of real numbers by R and R  is the set of positive real numbers. If A  and 

B  are two non-empty sets, we define AxxBA :{\ but }Bx . 

        In 1922, Banach [3] proved a fixed point result involving some contraction. This 

contraction principle is one of the most important results in modern mathematics. After this a lot 

of fixed point results appeared in the literature. In 1984, Khan, Swaleh and Sessa [14] proved a 

new type of contraction mapping principle. They proved their result with the help of a control 

function, which they called altering distance function. Afterwards a number of works appeared in 

which altering distance function was used. We give below the definition of altering distance 

function: 

Definition 1.1 Altering distance function [14] 

A function ),0[),0[:h  is an altering distance function if  

    (i) h  is monotonic increasing and continuous and 

    (ii) ,0)(th  if only if 0t . 
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        Khan et al. proved the following generalization of Banach contraction mapping principle. 

Theorem 1.1 [14] Let ),( dX  be a complete metric space, h  be an altering distance function 

and let XXf :  be a self mapping which satisfies the following inequality  

)),(()),(( yxdchfyfxdh , 

for all Xyx,  and for some 10 c . Then f  has a unique fixed point. 

        In fact Khan et al. proved a more general theorem (Theorem 2 in [14]) of which the above 

result is a corollary. 

        References [1, 2, 18, 20, 21] and [22] are some of the examples of fixed point results in 

which single valued altering distance functions have been used. In [4], altering distance functions 

have been generalized to a two variable function and in [5] a three variable generalization have 

been introduced and applied for obtaining fixed point results. 

        Kannan [12, 13] introduced another type of contraction mappings. 

Definition 1.2 [12,13]  Let ),( dX  be a complete metric space and f  be a mapping on X . The 

mapping f is called a Kannan type mapping if there exists 
2

1
0  such that  

Xyxallforfyydfxxdfyfxd ,)],,(),([),( . 

        Kannan type mappings are considered to be important in metric fixed point theory for 

several reasons. We mention two mathematical reasons in the following. 

        A mapping satisfying Banach contraction is continuous. A natural question is whether there 

exists a class of mappings satisfying some contractive inequality which necessarily have fixed 

points in complete metric spaces but need not necessarily be continuous. Kannan type mappings 

are such mappings to be first discovered [12, 13]. Another reason is its connection with metric 

completeness. A Banach contraction mapping may have a fixed point in metric space which is 

not complete. In fact, Connell, in [9], has given an example of a metric space which is not 



            IJPSS                 Volume 1, Issue 2                 ISSN: 2249-5894 
_________________________________________________________         

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories 
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A. 

International Journal of Physical and Social Sciences 
 http://www.ijmra.us                                             

 
144 

October 

2011 

complete but every Banach contraction defined on this metric space has a fixed point. It has been 

established in [23], that the metric completeness is implied by the essential existence of fixed 

points of the class of Kannan type mappings. 

        There are a large number of works dealing with Kannan type mappings. Several examples 

of these works are noted in [15, 16] and [19]. 

        B.S. Choudhury and K.P. Das introduced a probabilistic generalization of altering distance 

function in [6]. After this a lot of fixed point and coincidence point results appeared in 

probabilistic spaces. Some of the references are noted in [7, 8, 10, 11] and [17]. 

        The purpose of this paper is to prove a fixed point result in complete metric spaces 

involving altering distance function. Our result is a generalization of the Banach contraction 

mapping principle and fixed point results due to Kannan. We have deduced some consequences 

from our theorem and our result is also supported by examples. 

 

The Main Theorem: 

Theorem 2.1 Let dcba ,,,  be four decreasing functions from }0{\R  into )1,0[  satisfy the 

property ,1)(4)()()( tdtctbta  for all 0t . Also let ),(X  be a complete metric space, 

 be an altering distance function and XXf :  be a self mapping which satisfies the 

following properties: 

)),(()).,(()),(()).,(()),(()).,(()),(( fyyyxcfxxyxbyxyxafyfx  

                                 )),((.)),(()).,(( fxyfyxyxd                                                   (2.1) 

and 

                                              whenever zxn
n
lim , then fzfxn

n
lim ,                                     (2.2) 

where Xyx,  and }{ nx  is a sequence of points from X . Then f has a unique fixed point. 
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Proof: Let 0x  be a point of X . We define nn fxx 1 , ),( 1nnn xx , for all integers 0n . 

We first prove that f  has a fixed point. We may take 0n , for all n , because if 0n , there 

is a fixed point of f . 

Substituting nxx  and 1nxy  in (2.1) we get 

)()()().()().()( 11 nnnnnnn cba  

                                                     )),((.)),(().( 111 nnnnn xxxxd .                           (2.3) 

Hence we get 

                                             )()(.
)(1

)()(
)( 1 nn

n

nn

n
c

ba
,                                       (2.4) 

because 1)(4)()()( tdtctbta , implies 1
)(1

)()(

tc

tbta
, for all 0t .  

Since  is an increasing function we get from (2.4), }{ n  is a decreasing sequence which is 

bounded below. 

                                                                Let n
n
lim .                                                            (2.5) 

We clam that 0 . If possible, let 0 . Then by (2.4) we get n , which implies that 

                                                       )(.
)(1

)()(
)( 1 nn

c

ba
.                                            (2.6) 

Letting n  in (2.6), since  is continuous, we obtain 
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                                                     )()(.
)(1

)()(
)(

c

ba
,                                          (2.7) 

which is impossible. Hence 0 . 

We now prove that }{ nx  is a Cauchy sequence. Suppose it is not. Then there exists 0  for 

which we can find subsequences }{ )(kmx  and }{ )(knx  of }{ nx  with nkmkn )()(  such that 

                                                               ),( )()( knkm xx .                                                      (2.8) 

Further, corresponding to )(km , we can choose )(kn  in such a way that it is the smallest integer 

with )()( kmkn  and satisfies (2.8). Then 

                                                             ),( 1)()( knkm xx .                                                      (2.9) 

Let ),( )()( kmknn xxs , for all 0n . Then we get  

                                  1)()(1)()(1)( ),(),( knkmknknknn xxxxs .                         (2.10) 

Letting k  in (2.10) we get, 

                                                    since 0lim n
n

 then n
n

slim .                                         (2.11) 

Note that k implies n . 

Also from triangle inequality we get, for all 0n , 

                                   nkmknkmknnkmkn sxxs )()(1)(1)()()( ),( .                    (2.12) 

Letting k  in (2.12) we get 
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                                                             ),(lim 1)(1)( kmkn
n

xx .                                            (2.13) 

Substituting )(knxx  and )(kmxy  in (2.1) we get 

)().()().()().()),(( )()(1)(1)( kmnknnnnkmkn scsbssaxx  

                                                            )),((.)),(().( 1)()(1)()( knkmkmknn xxxxsd .     (2.14) 

Again applying triangle inequality in (2.14) we get 

)().()().()().()),(( )()(1)(1)( kmnknnnnkmkn scsbssaxx  

                                                            )(.)().( )()( knnkmnn sssd .                        (2.15) 

Letting k  in (2.15) we get 

                                                         )()()}.()({)( da ,                                 (2.16) 

which is absurd. Therefore }{ nx  is a Cauchy sequence and hence it is convergent in a complete 

metric space X . 

                                                               Let zxn
n
lim .                                                          (2.17)       

We now show that z  is a fixed point of f . Since each 0n , there is a subsequence }{ )(nhx  of 

}{ nx  such that zx nh )( , for each 0n . Let ),( nn xz , for all 0n . 

Substituting )(nhxx  and zy  in (2.1) we get 

)),(().()().()().()),(( )()()()()(1)( fzzcbafzx nhnhnhnhnhnh  
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                                              )),((.)().( )(1)()( fzxd nhnhnh .                                   (2.18) 

Note that cba ,,  are all less than 1 and d  is less than 
4

1
. 

Hence by applying triangle inequality again in (2.18) we get 

              )),(()()()),(( )()(1)( fzzfzx nhnhnh  

                                               + )),((.)),(),((
4

1
)()( fzzfxfzfzz nhnh .              (2.19) 

Letting n  in (2.19) and using (2.2) we get 

                                              )),((
2

1
)),((suplim 1)( fzzfzx nh

n

.                                   (2.20) 

On the other hand, the triangle inequality implies that 

                                                 ),(),( 1)()()( fzxfzz nhnhnh .                                    (2.21) 

Since  is increasing, from (2.21) we obtain by letting n   

                                                 )),((suplim)),(( 1)( fzxfzz nh
n

.                                   (2.22) 

From (2.20) and (2.22) we get 0)),(( fzz , which implies 0),( fzz . So z  is a fixed 

point of f . 

To prove the uniqueness of the fixed point, let us suppose that 1z  and 2z  be two fixed points of 

f . Then from (2.1) we get 
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)),((()),((())}.,((()),(({)),(()),(( 212121212121 zzzzzzdzzafzfzzz , 

a contradiction. Hence we must have 21 zz . 

        This completes the proof. 

 

Some Consequences and Examples: 

If we assume 0d  and cb  in (2.1) we get the following theorem: 

Theorem 3.1 Let ba,  be two decreasing functions from }0{\R  into )1,0[  which satisfy the 

property ,1)(2)( tbta  for all 0t . Also let ),(X  be a complete metric space,  be an 

altering distance function and XXf :  be a continuous self mapping which satisfies the 

following property: 

))},(()),(()).{,(()),(()).,(()),(( fyyfxxyxbyxyxafyfx ,  

where Xyx,  and }{ nx  is a sequence of points from X . Then f has a unique fixed point. 

If we put cb  in (2.1), we get the following theorem: 

Theorem 3.2 Let cba ,,  be three decreasing functions from }0{\R  into )1,0[  which satisfy the 

property ,1)(4)(2)( tctbta  for all 0t . Also let ),(X  be a complete metric space,  be 

an altering distance function and XXf :  be a continuous self mapping which satisfies the 

following property: 

))},(()),(()).{,(()),(()).,(()),(( fyyfxxyxbyxyxafyfx  
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                                        )),((.)),(()).,(( fxyfyxyxc , 

where Xyx,  and }{ nx  is a sequence of points from X . Then f has a unique fixed point. 

We have proved below that Theorem 2.1 is an improvement of the Banach Contraction Principle. 

Theorem 3.3 (Banach Contraction Principle) Let ),(X  be a complete metric space and 

XXT :  be a mapping such that 

                                                             ),(),( yxTyTx ,                                                    (3.1) 

for all Xyx,  and 10 . Then T  has a unique fixed point in X . 

Proof: We know that if a mapping T  satisfies the condition (3.1) in Theorem 3.3, it is a 

continuous mapping. Hence condition (2.2) of Theorem 2.1 is obviously satisfied by these types 

of maps. Let xx)( , for all ),0[x . We now put 0dcb  and a  in Theorem 2.1 

and we get the Banach Contraction Principle. 

Putting 0a , cb  and 0d  in Theorem 2.1 we get result due to Kannan [12, 13]. Note 

that at this time we also set xx)( , for all ),0[x .  

Here we have given two examples, one in discrete case and the other in continuous case, which 

support our main theorem, that is, Theorem 2.1.  

Example 3.1 Let }3,2,1{X  and  be defined by 
2

1
)2,1()1,2( , 1)3,2()2,3( , 

1)1,3()3,1(  and 0)3,3()2,2()1,1( . Then ),(X  is a complete metric space. 

We now take XXf :  be a function, defined by 21f , 22f  and 13f . Also let  be 
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an altering distance function defined by xx)( , for all ),0[x . Then the function f  

satisfies all the conditions of Theorem 2.1 and we see that it has a unique fixed point 2 in X .  

Example 3.2 Let ]1,0[X  and yxyx ),( , for all Xyx, . Then ),(X  is a complete 

metric space. Let XXf :  be defined by 
2

)(
x

xf , for all Xyx, , then obviously f is a 

continuous function. Also let  be an altering distance function defined by xx)( , for all 

),0[x . Then the function f  satisfies all the conditions of Theorem 2.1 and we see that it has 

a unique fixed point 0 in X .  
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