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Abstract:

In this paper we have proved a fixed point theorem in a complete metric space with the help of
an altering distance function. The main feature of our theorem is that, it contains square root in
the inequality. We have also deduced some consequences of our theorem and supported our

result with examples.

Keywords: Contraction, Cauchy sequence, Fixed point, Altering distance function, Kannan type
mapping.
AMS Subject Classification 2010: 47H10, 54H25.

Introduction and Mathematical Preliminaries:

In this section we have given some existing definitions, results and notations which are essential

for our discussion in the next sections.

Throughout this paper we have used the following notations.

We denote the set of real numbers by R and R™ is the set of positive real numbers. If A and

B are two non-empty sets, we define A\B={x:xe Abutx ¢ B}.

In 1922, Banach [3] proved a fixed point result involving some contraction. This
contraction principle is one of the most important results in modern mathematics. After this a lot
of fixed point results appeared in the literature. In 1984, Khan, Swaleh and Sessa [14] proved a
new type of contraction mapping principle. They proved their result with the help of a control
function, which they called altering distance function. Afterwards a number of works appeared in
which altering distance function was used. We give below the definition of altering distance

function:

Definition 1.1 Altering distance function [14]

A function h:[0,00) —[0,) is an altering distance function if

(1) h is monotonic increasing and continuous and

(i) h(t) =0, ifonly if t = 0.
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Khan et al. proved the following generalization of Banach contraction mapping principle.

Theorem 1.1 [14] Let (X,d) be a complete metric space, h be an altering distance function

and let f: X — X be a self mapping which satisfies the following inequality

h(d(fx, fy)) <ch(d(x,y)),
for all x,y € X and for some 0<c <1.Then f has a unique fixed point.

In fact Khan et al. proved a more general theorem (Theorem 2 in [14]) of which the above

result is a corollary.

References [1, 2, 18, 20, 21] and [22] are some of the examples of fixed point results in
which single valued altering distance functions have been used. In [4], altering distance functions
have been generalized to a two variable function and in [5] a three variable generalization have

been introduced and applied for obtaining fixed point results.

Kannan [12, 13] introduced another type of contraction mappings.
Definition 1.2 [12,13] Let (X,d) be a complete metric space and f be a mapping on X . The

mapping f is called a Kannan type mapping if there exists 0 < « <% such that

d(fx, fy) <e[d(x, fx)+d(y, fy)], forall x,y e X .

Kannan type mappings are considered to be important in metric fixed point theory for

several reasons. We mention two mathematical reasons in the following.

A mapping satisfying Banach contraction is continuous. A natural question is whether there
exists a class of mappings satisfying some contractive inequality which necessarily have fixed
points in complete metric spaces but need not necessarily be continuous. Kannan type mappings
are such mappings to be first discovered [12, 13]. Another reason is its connection with metric
completeness. A Banach contraction mapping may have a fixed point in metric space which is

not complete. In fact, Connell, in [9], has given an example of a metric space which is not
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complete but every Banach contraction defined on this metric space has a fixed point. It has been
established in [23], that the metric completeness is implied by the essential existence of fixed

points of the class of Kannan type mappings.

There are a large number of works dealing with Kannan type mappings. Several examples
of these works are noted in [15, 16] and [19].

B.S. Choudhury and K.P. Das introduced a probabilistic generalization of altering distance
function in [6]. After this a lot of fixed point and coincidence point results appeared in
probabilistic spaces. Some of the references are noted in [7, 8, 10, 11] and [17].

The purpose of this paper is to prove a fixed point result in complete metric spaces
involving altering distance function. Our result is a generalization of the Banach contraction
mapping principle and fixed point results due to Kannan. We have deduced some consequences
from our theorem and our result is also supported by examples.

The Main Theorem:

Theorem 2.1 Let a,b,c,d be four decreasing functions from R* \{0} into [0,1) satisfy the
property a(t) +b(t)+c(t) +4d(t) <1, for all t >0. Also let (X, 0) be a complete metric space,
w be an altering distance function and f :X — X be a self mapping which satisfies the

following properties:

(X fy)) <a(o(x y)y(p(x, ¥)) +b(o(x y)) i (o(x, 1)) +c(o(x, ) 1 (o(y. Ty))

+d(p(%, ) (p(X, 1))l (o(y, X)) (2.1)
and
whenever MQ X, =2, then l'l!! he=1z) (2.2)

where x,y € X and {x,} is a sequence of points from X . Then f has a unique fixed point.
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Proof: Let x, be a point of X . We define x,,, = fx,, 7, = p(X,,X,,;) , for all integers n>0.

We first prove that f has a fixed point. We may take 7, > 0, for all n, because if 7, =0, there

is a fixed point of f .

Substituting x = x, and y = Xx,,, in (2.1) we get

() <alz,)w(z,) +b(z,) w(z,) +c(z, )y (7,..)

+ d (Tn)'\/l//(p(xn ! Xn+1))'\/l//(p(xn+l’ Xn+1)) ) (23)
Hence we get
(o) < 23D oy ey, (2.4)
1- C(Tn)

because a(t) +b(t) +c(t) +4d(t) <1, implies a(lt);t;gt) <1, forall t>0.
Since  is an increasing function we get from (2.4), {z,} is a decreasing sequence which is

bounded below.

Let limz, =7. (2.5)

n—o

We clam that 7 =0. If possible, let z >0. Then by (2.4) we get z, =z, which implies that

a(r) +b(zr)
W(Thia) Sm-l//(fn)- (2.6)

Letting n — oo in (2.6), since y is continuous, we obtain
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w0 <2 L0 <y o), @.7)
~e(0)

which is impossible. Hence 7 =0.

We now prove that {x,} is a Cauchy sequence. Suppose it is not. Then there exists £ >0 for

which we can find subsequences {x,,,} and {x,} of {x,} with n(k) >m(k) > n such that

PXngyr Xngo) Z € - (2.8)

Further, corresponding to m(k), we can choose n(k) in such a way that it is the smallest integer

with n(k) > m(k) and satisfies (2.8). Then

P Xy 1 Xngo-1) <& - (2.9)

Let s, = p(Xyuys Xmay ) » for all n>0. Then we get

Sl p(Xn(k)—l’ Xn(k)) i p(Xn(k)—l1 Xm(k)) <Thk-1te€- (2.10)
Letting k — oo in (2.10) we get,

since limz, =0 then lims, =¢. (2.11)

s n->c0
Note that k — coimplies N — oo.
Also from triangle inequality we get, for all n>0,

~Togo ~ Tmky T Sn S PXngigenr Ximgo1) < Ty + Tingy + S (2.12)

Letting k — oo in (2.12) we get
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rl]l_[g p(xn(k)+1’ Xm(k)+l) =&. (213)

Substituting x = X, and y = X, in (2.1) we get

W (P(Xowyas Xmqys1)) < A(S,) 4w (S,) +0(8,) 4w (7,4)) + €(S0) 9w (Trniiy)

+d(s, )-\/‘//(P(Xn(k) , Xm(k)+1))'\/l//(p(xm(k) Xogya)) - (2.14)
Again applying triangle inequality in (2.14) we get

‘//(P(Xn(k)+11 Xm(k)+1)) <a(s,)w(s,)+b(s, )-V/(Tn(k)) + C(Sn)-W(Tm(k))

+d(5n)-\/l//(sn +Tm(k))-\/‘//(sn +Tn(k)) . (2.15)
Letting k — o0 in (2.15) we get
w(e) <{a(e) +d(e)}y(e) <y(e), (2.16)

which is absurd. Therefore {Xx,} is a Cauchy sequence and hence it is convergent in a complete

metric space X .

Let limx, =z. (2.17)

n—w

We now show that z is a fixed point of f . Since each 7z, >0, there is a subsequence {x,,} of

{x,} such that x,, #z, foreach n>0. Let a, = p(z,X,), forall n>0.
Substituting x = X, and y =z in (2.1) we get

W (X 12)) < @l ) W (@) + () ¥ (1)) + () ) (0(2, 2))
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+d (ah(n))'\/l//(ah(n)+1)'\/l//(p(xh(n) , 12)).

Note that a,b,c are all less than 1 and d is less than %

Hence by applying triangle inequality again in (2.18) we get

W (oKX 12)) <@ (@) + (@) +w(o(z, 2))

+ 2 rp( T) + (T2, B Dy (et + 02, T2).

Letting n — o0 in (2.19) and using (2.2) we get

L

limsupy (o(Xy .0 f2)) < Zw(p(z, fz)).

N—o0

On the other hand, the triangle inequality implies that
P(2,12) < ety + Ty + P(Xnoyaa» F2) -
Since y is increasing, from (2.21) we obtain by letting n — oo

w(p(z, 12)) < imsupy (p(Xy gy, 12)).

n—oo

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

From (2.20) and (2.22) we get w(p(z, fz)) =0, which implies p(z, fz2)=0. So z is a fixed

point of f .

To prove the uniqueness of the fixed point, let us suppose that z, and z, be two fixed points of

f . Then from (2.1) we get
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w(p(z,,2,)) =yw(p(fz,, f2,)) <{a(p(z,,2,)) +d((p(z,, 2,)) }w ((0(2,, 2,)) <w ((p(2,, 2,)),

a contradiction. Hence we must have z, = z,.

This completes the proof.

Some Consequences and Examples:

If we assume d =0 and b =c in (2.1) we get the following theorem:

Theorem 3.1 Let a,b be two decreasing functions from R* \{0} into [0,1) which satisfy the
property a(t)+2b(t) <1, for all t>0. Also let (X,,0) be a complete metric space,  be an
altering distance function and f : X — X be a continuous self mapping which satisfies the

following property:

y(p(fx, fy)) < a(o(x, y)) i (o(x, ) +b(o(x, y)) v (o(x, 1)) +w(o(y, fy)},

where X,y € X and {x,} is a sequence of points from X . Then f has a unique fixed point.

If we put b=c in (2.1), we get the following theorem:

Theorem 3.2 Let a,b,c be three decreasing functions from R* \{0} into [0,1) which satisfy the
property a(t) +2b(t) +4c(t) <1, forall t >0. Also let (X, p) be a complete metric space, y be
an altering distance function and f : X — X be a continuous self mapping which satisfies the

following property:

yw(p(1x, fy)) < a(o(x, )y (p(x y)) +blo(x )y (o(x, X)) +y(o(y, )}
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+c(p(X, Y))Afw (p(X, 1)1 (p(y, X)),
where x,y € X and {x,} is a sequence of points from X . Then f has a unique fixed point.

We have proved below that Theorem 2.1 is an improvement of the Banach Contraction Principle.

Theorem 3.3 (Banach Contraction Principle) Let (X,p) be a complete metric space and

T : X — X be a mapping such that

P, Ty) <ap(X,y), (3.1)
forall x,ye X and O<a <1. Then T has a unique fixed pointin X .

Proof: We know that if a mapping T satisfies the condition (3.1) in Theorem 3.3, it is a
continuous mapping. Hence condition (2.2) of Theorem 2.1 is obviously satisfied by these types

of maps. Let y/(x) = x, for all x €[0,0). We now put b=c=d =0 and a =« in Theorem 2.1

and we get the Banach Contraction Principle.

Putting a=0, b=c=«a and d =0 in Theorem 2.1 we get result due to Kannan [12, 13]. Note

that at this time we also set y/(x) = x, for all x €[0,x).

Here we have given two examples, one in discrete case and the other in continuous case, which

support our main theorem, that is, Theorem 2.1.

Example 3.1 Let X ={1,2,3} and p be defined by p(21) = p(1,2) :%, 0(3,2) = p(2,3) =1,

pL3)=p(BY) =1 and p@Ll) = ,(2,2)=p(33)=0. Then (X,p) is a complete metric space.

We now take f : X — X be a function, defined by f1=2, f2=2 and f3=1. Also let v be
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an altering distance function defined by /(x)=x, for all x€[0,). Then the function f

satisfies all the conditions of Theorem 2.1 and we see that it has a unique fixed point 2 in X .
Example 3.2 Let X =[0,1] and po(X,Y) :|x— y|, for all x,ye X . Then (X, p) is a complete

metric space. Let f: X — X be defined by f(x) =§, for all x,y € X, then obviously fis a

continuous function. Also let y be an altering distance function defined by /(x) = x, for all
x €[0,0). Then the function f satisfies all the conditions of Theorem 2.1 and we see that it has

a unique fixed point 0 in X .
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